

FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA XVIII.

Kolozsvár, 2013. március 21-22.

FULLERÉNEK STABILITÁSÁNAK PREDIKCIÓJA TOPOLÓGIAI INVARIÁNSOK FELHASZNÁLÁSÁVAL

Réti Tamás, Fried Zoltán, László István, Drégelyi-Kiss Ágota

Abstract

To characterize the topological structure of fullerene molecules, a novel approach is presented. The method proposed is based on the following concept. As a first step we consider the dual of the traditional fullerene graph, and as a second step, from the adjacency matrix of the corresponding dual graph, some topological invariants designated to the characterization of fullerene structures are derived. Performing tests on the set of C40 and C66 fullerene isomers, it is verified that the selected topological descriptors (Ro and EE) are efficiently used for the stability prediction of fullerene isomers.

Key words:

polyhedral graphs, stability prediction, fullerenes

Összefoglalás

Új módszert ismertetünk fullerének topológiai szerkezetének jellemzésére. A módszer a következő koncepción alapul: Első lépésben generáljuk a fullerén gráf duálisát, majd a második lépésben olyan topológiai invariánsokat származtatunk, amelyek fullerén szerkezet jellemzésére alkalmasak. A módszer hatékonyságát C40 és C66 fullerén izomerek halmazán teszteltük. Az eredmények igazolták, hogy kiválasztott topológiai deszkriptorok (EE és Ro) eredményesen használhatók fullerén izomerek stabilitásának predikciójára.

Kulcsszavak:

Poliéder-gráfok, stabilitás predikció, fullerének

1. Bevezetés

A fullerének n számú karbon-atomot tartalmazó óriásmolekulák, amelyeket geometriailag poliéderekkel illetve síkbeli poliéder-gráfokkal szokás modellezni. Közös sajátosságuk, hogy a trivalens poliédernek tekintett C_n fullerént kizárólag 5- és 6-szögű poligonok alkotják, ahol n a poliéder csúcsainak száma, amelyre n ≥ 20 és n $\neq 22$ megszorítások érvényesek [1]. A fullerén-kutatás kapcsán felmerülő fontos problémák egyike a lehetséges fullerén-izomerek stabilitásának predikciója. Jelenleg nem ismeretes megbízható, és viszonylag egyszerű módszer annak megállapítására, hogy a nagyszámú izomer közül melyek lehetnek azok, amelyeknek fizikai létezésére reális esély kínálkozik. A klasszikus energetikai számítások elvileg lehetőséget nyújtanak a stabilitás megbízható előre jelzésére, de ezek a számítások az n atomszám növekedésével mind inkább időigényesek. Újabban előtérbe került a nem-tradicionális felépítésű (non-classical) fullerének topológiai struktúrájának kvantitatív vizsgálata is [1]. Ez utóbbiak olyan trivalens poliédereknek tekinthetők, amelyeknek

jellemzője, hogy az 5- és 6-szögeken kívül tartalmazhatnak még 4- valamint 7-szögű lapokat is. A stabilitás predikcióját érintő, elsődlegesen számítástechnikai nehézségek fokozottan jelentkeznek a nem-tradicionális fullerének esetében.

Jelen dolgozatban egy merőben újszerű módszert ismertetünk a fullerén izomerek stabilitásának előrejelzésére. A módszer a következő koncepción alapszik: Tekintve, hogy a fullerének síkbeli poliéder-gráfokkal reprezentálhatók, ezért ezen gráfoknak mindig létezik egyértelműen definiált ún. duális gráfja, amely kizárólag 5- és 6-fokszámú csúcsokat tartalmaz. Ez a megközelítés gyakorlatilag azt jelenti, hogy elég a vizsgálatokat a duális gráfok szomszédossági mátrixának elemzésére korlátozni, illetve a szomszédossági mátrix (adjacency matrix) adataiból olyan topológiai invariánsokat származtatni, amelyek eséllyel jönnek számításba a stabilitás előrejelzésre.

Az újonnan javasolt topológiai indexek predikciós célra való gyakorlati alkalmazhatóságát a C_{40} valamint a C_{66} fullerén-izomerek véges halmazán teszteltük.

2. Topológiai invariánsok

Fullerén izomerek strukturális jellemzésére leginkább használatos topológiai invariáns az Np pentagon index. Ez egy nem-negatív egész szám, amely azonos a 12 ötszög közötti közös élek számával, értéke elvileg 0 és 30 között változhat [1,2]. Mivel egy fullerénben az ötszögek száma mindig 12, ezért Np=0 akkor és csak akkor, ha minden ötszög izolált, azaz minden egyes 5-szög pontosan öt darab 6-szöggel élszomszédos. Általánosan elterjedt nézet, hogy adott n csúcsszám esetén azon izomerek tekinthetők leginkább stabilnak, amelynek pentagon indexe kicsi, azaz nulla vagy ehhez közeli szám [1,2]. A közel múltban a fullerén-struktúrák számszerű jellemzésére előtérbe került az ún. Estrada-index alkalmazása [3]. Az EE(G) Estrada index egy G gráf szomszédossági mátrixának sajátértékei alapján definiált topológiai invariáns:

$$EE(G) = \sum_{i} \exp(\rho_i)$$

ahol ρ_i az i-edik sajátérték.

Mind a pentagon index (Np), mind az Estrada index (EE(G)) alkalmazásának vannak előnyei és hátrányai. Mindkettő viszonylag könnyen számítható, különösképp igaz ez a pentagon indexre. Az utóbbi hátránya azonban, hogy diszkriminációs képessége korlátozott, ugyanis létezik számos izomer, amelynek pentagon indexe azonos, (Pl. Np=2) így ezen izomerek stabilitási sorrendje nyilván nem minősíthető Np alapján. Az Estrada index hátrányos tulajdonsága [3], hogy az egyes izomerek Estrada indexei között rendkívül kicsi a különbség, az esetek zömében az eltérések maximális értéke kissebb mint 0,01.

A fullerének duális gráfjait vizsgálva arra következtettünk, hogy mind a Cn fullerén-gráf duális

gráfjának Estrada indexe $EE(C_n^{dual})$, mind pedig a duális gráf spektrál rádiusza $\rho(C_n^{dual})$, azaz a maximális értékű sajátérték, előnyösen használhatók stabilitás predikció céljára. Statisztikus módszerekkel elemeztük C40 és C66 fullerén-izomerekre vonatkozóan egyes topológiai invariánsok és a fizikai modell alapján becsült En keletkezési energiák közötti sztochasztikus kapcsolatokat. A fullerén izomerek E_n keletkezési energiáit, – amely az izomer relatív stabilitásának számszerű jellemzője - az elterjedten használatos Density Functional Tight-Binding (DFTB) módszerrel számítottuk [4]. Minél kisebb az En energetikai paraméter értéke, annál stabilabbnak tekintendő a hozzá tartozó izomer. A diagramokkal ábrázolt összefüggések értelmezésének megkönnyítésére a következő egyszerűsítő jelöléseket vezettük be: EE = az eredeti, trivalens fullerén gráf Estrada indexe, EE_{dual} = a duális fullerén gráf Estrada indexe, R_o = a duális fullerén gráf ρ spektrál rádiusza.

3. C40 fullerén izomerek vizsgálata

A C40 típusú fulleréneknek pontosan 40 izomerje létezik, ezek pentagon indexe 10 és 20 között változik. Az energetikai számítások szerint a legstabilabb a C40:38 izomer, ezt követik sorrendben a C40:39 és C40:31 izomerek. A saját számítások eredményeit (topológiai paraméterek és En energetikai jellemző) az 1. táblázat összesíti. Az 1. ábra diagramjai a C40 izomerekre vonatkozó eredményeket grafikus formában jelenítik meg.

Mint megállapítható, mind a négy vizsgált topológiai invariáns erősen korrelál az En energetikai jellemzővel, következésképpen a stabilitás predikciójára alkalmasnak mutatkoznak. Az Np pentagon index és az EE Estrada index nem teszi lehetővé az izomerek közötti strukturális különbségek detektálását, mivel több olyan izomer létezik, amelynek azonos, vagy közel azonos a pentagon indexe illetve az Estrada indexe.

1. ábra. Korrelációs összefüggések a 40 darab C40 fullerén-izomerre vonatkozóan

Izomer	Topológiai paraméterek				Energia (E _n [eV])
	Ro	EE _{dual}	EE	Np	(11 [* 1/
C40:38	5.4890495	384.0861429	132.0267238	10	-342,031
C40:39	5.4897603	384.1524340	132.0267262	10	-341,631
C40:31	5.4913203	384.3456462	132.0272051	11	-341,438
C40:29	5.4917461	384.3961455	132.0272065	11	-341,345
C40:26	5.4918157	384.3885577	132.0271643	11	-341,094
C40:24	5.4922670	384.4460111	132.0271656	11	-341,022
C40:37	5.4910060	384.2728637	132.0271218	11	-340,636
C40:40	5.4927389	384.5051255	132.0276837	12	-340,580
C40:14	5.4946883	384.7548057	132.0276523	12	-340,476
C40:36	5.4910060	384.2772077	132.0271218	11	-340,431
C40:30	5.4939737	384.6289867	132.0276467	12	-340,304
C40:25	5.4945800	384.6935372	132.0276048	12	-340,277
C40:22	5.4947709	384.7344424	132.0276060	12	-340,230
C40:35	5.4917209	384.3481603	132.0271220	11	-340,196
C40:21	5.4956524	384.8430166	132.0276076	12	-340,151
C40:27	5.4937994	384.6090975	132.0276044	12	-340,126
C40:15	5.4944877	384.6903195	132.0276088	12	-339,943
C40:17	5.4960335	384.8787435	132.0280898	13	-339,884
C40:34	5.4936774	384.5611023	132.0275623	12	-339,827
C40:28	5.4944236	384.6592604	132.0276058	12	-339,777
C40:16	5.4964612	384.9461311	132.0280952	13	-339,645
C40:20	5.4957915	384.8691424	132.0275654	12	-339,627
C40:9	5.4977966	385.1507334	132.0280982	13	-339,614
C40:10	5.4977120	385.0989738	132.0280519	13	-339,558
C40:12	5.4970645	384.9986241	132.0280504	13	-339,370
C40:13	5.4976413	385.0852416	132.0280517	13	-339,347
C40:19	5.4962914	384.8964782	132.0280911	13	-339,292
C40:23	5.4972724	384.9689797	132.0280055	13	-338,690
C40:6	5.5011144	385.5627727	132.0284988	14	-338,624
C40:18	5.4989259	385.1550042	132.0284895	14	-338,341
C40:5	5.5020757	385.7362473	132.0285480	14	-338,332
C40:32	5.4994279	385.2683608	132.0284853	14	-338,270
C40:8	5.5046265	386.0925238	132.0289921	15	-338,113
C40:33	5.4999739	385.3045578	132.0284858	14	-337,922
C40:4	5.5039109	385.9108375	132.0289449	15	-337,348
C40:7	5.5029706	385.7240240	132.0289380	15	-337,330
C40:11	5.5019917	385.5385376	132.0288945	15	-336,642
C40:2	5.5086293	386.6542055	132.0293939	16	-336,489
C40:3	5.5160459	387.8701024	132.0302887	18	-335,193
C40·1	5 5260158	389 9454188	132 0312134	20	-333 806

1. táblázat C40 fullerén izomerekre jellemző topológiai invariánsok és becsült energetikai jellemzők

A duális gráfok alapján származtatott topológiai jellemzők (EEdual és Ro) ugyancsak jól korrelálnak az En energia-paraméterrel. Az EEdual paraméter előnyös tulajdonsága, hogy értéke jóval szélesebb intervallumban változik, mint EE értéke. A statisztikai elemzés alapján megállapítható, hogy a Ro spektrál rádiusszal való becslés valamivel kedvezőbb eredményt ad mint az EEdual paraméterrel végzett becslés. Valójában, az izomerek stabilitási sorrendjének előrejelzése itt az alapvető fontosságú feladat, az En energetikai jellemző konkrét számszerű értéknek becslése csak másodlagos jelentőséggel bír.

4. C66 fullerén izomerek vizsgálata

A C66 típusú fullerén izomerek száma 4478. Közülük mindössze három olyan létezik, amelynek pentagon indexe minimális, azaz Np=2. Ezek tekinthetők a leginkább stabil izomereknek az energetikai számítások szerint is. Pontosan 26 olyan izomer létezik, amelynek pentagon index Np=3, és 176 azon izomerek száma, amelyeknek pentagon indexe Np=4. Egyetlen olyan izomer létezik, amelynek pentagon indexe maximális, azaz Np=16. Érdekesség, hogy 2 és 16 közötti intervallumban mindig létezik pozitív pentagon indexű izomer, Np=15 kivételével.

A számításokat mind a 4478 izomerre elvégeztük. A 2. ábra diagramjain azonban csak azon 40 izomer paramétereit szemléltettük, amelyek energetikai szempontból sorrendben a legjobb eredményeket szolgáltatták (vagyis amelyekre nézve az E_n energetikai jellemzők minimálisak).

A 2. ábra diagramjait elemezve arra következtethetünk, hogy azon 3 izomer energetikailag a legstabilabb, amelyek pentagon index minimális, azaz Np=2. A többi 37 izomer stabilitásáról a pentagon index már alig ad hasznos információt. Lényegében ugyanez mondható el az eredeti fullerén gráfok Estrada indexéről (EE) is. Megfigyelhető azonban, hogy a duális gráfok EE_{dual} és R_o topológiai paraméterei már több információt nyújtanak a stabilitási sorrend predikcióját illetően. Itt is érvényesül az a tendencia, hogy egy izomer annál stabilabbnak tekinthető, minél kisebb EE_{dual} és R_o értéke. A 3. és 4. ábrák diagramjai a 4478 izomerre vonatkozóan 3 topológiai paraméter, nevezetesen az EE, EE_{dual} és R_o invariánsok közötti összefüggést szemléltetik.

2. ábra. Korrelációs összefüggések az energetikailag legjobb 40 darab C66 fullerén-izomerre vonatkozóan

Amint a 3. ábra diagramjából kitűnik, a hagyományos fullerén gráfok és a duális gráfok Estrada indexei között meglehetősen szoros az összefüggés. Az egymástól elkülönülő ponthalmazok azon izomereket reprezentálják, amelyeknek azonos az Np pentagon indexe. Jól kivehető, hogy Np=16 pentagon indexű fullerénből csak 1 darab van, és nem létezik Np=15 indexű fullerén. Hasonló módon igen szoros korreláció mutatható ki a duális gráfok Estrada indexe és spektrál rádiusza között. Ezek minimális értékei a leginkább stabil izomerekhez tartoznak, ezért mindkét topológiai jellemző felhasználható predikció céljára. Nyilván a spektrál rádiusz alkalmazása az előnyösebb, mivel ennek meghatározása egyszerűbb.

3. *ábra.* Sztochasztikus kapcsolat az EE és EE_{dual} Estrada indexek között C66 fullerén-izomerek esetében

4. ábra. Sztochasztikus kapcsolat a duális gráfok Estrada indexe és spektrál rádiusza között

5. Összefoglalás, következtetések

Fullerén izomerek topológiai szerkezetének jellemzésére egy új módszert ismertettünk. A tesztek alapján arra következtettünk, hogy a duális fullerén gráf Estrada indexe (EE_{dual}) és a duális fullerén gráf spektrál rádiusza (R_o) egyaránt alkalmas az egyes izomerek strukturális jellemzésére, valamint stabilitásuk predikciójára.

Irodalom

- [1] P. W. Fowler, D. E. Manolopoulos, An Atlas of Fullerenes, Calendron Press, Oxford, 1995.
- [2] E. Albertazzi, C. Domene, P,W. Fowler, T. Heine, G. Seifert, C. Van Alsenoy, F. Zerbetto, *Pentagon adjacency as a determinant of fullerene stability*, Phys. Chem. Chem. Phys., Vol. 1, (1999) p. 2913-2918.
- [3] P. W. Fowler, A. Graovac, *The Estrada index and fullerene isomerism*, in: The Mathematics and Topology of Fullerenes, Eds. F. Cataldo, A. Graovac, O. Ori, Springer Dordrecht, (2011) p. 265-280.
- [4] D. Porezag et al., *Constitution of Tight-Binding-like Potentials on the Basis of Density-Functional Theory: Application to Carbon*, Phys. Rev. Vol. B51 (1995) p.12947-12957.

dr. László István

Budapest University of Technology and Economics, Institute of Physics, H-1521 Budapest E-mail: <u>laszlo@eik.bme.hu</u>

Fried Zoltán

Budapest Polytechnic, Budapest H-1081 Budapest, Népszinház u. 8, Hungary E-mail: <u>kolozsvar@deirf.hu</u> **dr. Réti Tamás** Óbudai Egyetem, Budapest H-1081 Budapest, Népszinház u. 8, Hungary E-mail: <u>reti.tamas@bgk.uni-obuda.hu</u>

dr. Drégelyi-Kiss Ágota Óbudai Egyetem, Budapest H-1081 Budapest, Népszinház u. 8, Hungary E-mail: dregelyi.agota@bgk.uni-obuda.hu